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Abstract. In order to give a new proof of a theorem concerned with1

conformally symmetric Riemannian manifolds due to Roter and Derdzin-2

sky [8], [9] and Miyazawa [15], we have adopted the technique used in a3

theorem about conformally recurrent manifolds with harmonic conformal4

curvature tensor in [3]. In this paper, we also present a new proof of a suc-5

cessive refined version of a theorem about conformally recurrent manifolds6

with harmonic conformal curvature tensor. Moreover, as an extension of7

theorems mentioned above we prove some theorems related to quasi con-8

formally recurrent Riemannian manifolds with harmonic quasi conformal9

curvature tensor.10
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1 Introduction14

Let M be a non flat n(≥ 4) dimensional Riemannian manifold with metric gij and
Riemannian connection ∇. It is said to be conformally recurrent if the conformal
curvature tensor satisfies ∇iCjklm = λiCjklm (See [1], [3] and [11]), where λi is some
non null covector and the components of the conformal curvature tensor [16] are given
by :

Cjklm = Rjklm +
1

n− 2
(δm

j Rkl − δm
k Rjl + Rm

j gkl −Rm
k gjl)

− R

(n− 1)(n− 2)
(δm

j gkl − δm
k gjl).

(1.1)

Here we have defined the Ricci tensor to be Rkl = −Rmklm [23] and the scalar15

curvature R = gijRij . The recurrence properties of Weyl’s tensor has been analized16

also in [13]. If∇iCjklm = 0, the manifold is said to be conformally symmetric (See [5],17

[8],[10] and [18]). If ∇mCjklm = 0, the manifold is said to have harmonic curvature18
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tensor (See [4]). If Cjklm = 0, the manifold is called conformally flat (See [16]). In19

[13] the properties of some class of conformally flat manifolds are pointed out. It may20

be scrutinized that the conformal curvature tensor vanishes identically if n = 3 and if21

M is a space of constant curvature. A manifold is said to be Ricci recurrent if its non22

null Ricci tensor is recurrent, i.e. if ∇kRij = βkRij (See [11]) where βk is another23

non null covector.24

Recently a theorem concerning conformally recurrent Riemannian or semi-Riemannian25

manifolds with harmonic curvature tensor was introduced in [3] (Theorem 3.4) and [19].26

We refer to it as :27

Theorem 1.1. Let M be an n(≥ 4) dimensional Riemannian manifold with Rieman-28

nian connection ∇. Assume that M is conformally recurrent and has the harmonic29

conformal curvature tensor. If the scalar curvature is constant (∇jR = 0), then M is30

conformally symmetric, conformally flat or Ricci recurrent.31

This theorem was used in [3] to give a complete classification of conformally re-32

current Riemannian manifolds with harmonic curvature tensor. In the same reference33

it was stated another Theorem ([3], Theorem 3.6) that refines Theorem 1.1. We refer34

to it as:35

Theorem 1.2. Let M be an n(≥ 4) dimensional Riemannian manifold with Rieman-36

nian connection ∇. Assume that M is conformally recurrent and has the harmonic37

conformal curvature tensor. If the scalar curvature is non zero constant, then M is38

conformally flat or locally symmetric.39

In [19] the authors extended Theorem 1.2 to the case of semi-Riemannian man-40

ifolds. Moreover they also pointed out that the assumption of a constant scalar41

curvature may be dropped in the case of a definite metric and stated the following42

(see [19] Remark 3.3) :43

Theorem 1.3. Let M be an n(≥ 4) dimensional Riemannian manifold with Rieman-44

nian connection ∇. Assume that M is conformally recurrent and has the harmonic45

conformal curvature tensor. Then M is conformally symmetric.46

In this paper we give a new proof of a classical theorem about conformally symmetric47

Riemannian manifolds using a technique adopted in [3] for Theorem 1.1. Now we48

assert the following :49

Theorem 1.4. An n(≥ 4) dimensional conformally symmetric manifold is confor-50

mally flat or locally symmetric.51

This result is fulfilled on a manifold with positive definite metrics. Miyazawa proved52

this statement with the extra assumption of n > 4 in [15]. A proof of the general53

case n > 3 was pointed out by Derdzinski and Roter in [9]. In section 2 of this paper54

we reobtain Theorem 1.4 by a correction of the procedure employed in the proof of55

Theorem 1.1 used in [3]. In section 3 we give an alternative proof of Theorem 1.3 and56

provide extensions of Theorems 1.1, 1.3 and 1.4 related to quasi-conformal symmetric57

or quasi-conformal recurrent Rimannian manifold.58

Moreover, combining the results of Theorems 1.3 and 1.4, we can state another the-59

orem as follows:60
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Theorem 1.5. Let M be an n(≥ 4) dimensional Riemannian manifold with Rieman-61

nian connection ∇. Assume that M is conformally recurrent and has the harmonic62

conformal curvature tensor. Then M is conformally flat or locally symmetric.63

2 The proof of Theorem B64

In this section the procedure adopted in [3] is pursued to obtain a proof of The-
orem 1.4. It is worth to notice that the assumption of constant scalar curvature
mentioned in Theorem 1.1 and employed in [3] is not used here in the proof of The-
orem 1.4. Let M be an n dimensional conformally symmetric manifold. Then the
following relation is fulfilled :

∇iRjklm = − 1
n− 2

(δm
j ∇iRkl − δm

k ∇iRjl +∇iR
m
j gkl −∇iR

m
k gjl)

+
∇iR

(n− 1)(n− 2)
(δm

j gkl − δm
k gjl).

(2.1)

From the previous result we can state the following65

Remark 2.1. Any conformally symmetric manifold with parallel Ricci tensor is sym-66

metric in the sense of Cartan, that is, ∇iRjklm = 0 ( See [12], [16] and [18]).67

From the notion of conformally symmetric manifold one easily gets (∇b∇a −
∇a∇b)Cjklm = 0. Then by the Ricci identity [23], we can write the following equa-
tion:

(2.2) Rbaj
p Cpklm + Rbak

p Cjplm + Rbalp Cjkpm + Rbam
p Cjklp = 0.

Performing the covariant derivative of equation (2.2) and taking account that∇iCjklm =
0, one obtains :

(2.3) ∇iRbaj
p Cpklm +∇iRbak

p Cjplm +∇iRbalp Cjkpm +∇iRbam
p Cjklp = 0.

From (2.3) and the fact that the manifold is conformally symmetric we obtain :

(2.4)

(∇iRbjCaklm +∇iRbkCjalm +∇iRblCjkam +∇iRbmCjkla)

−(∇iRajCbklm +∇iRakCjblm +∇iRalCjkbm +∇iRamCjklb)

+
1

n− 1
∇iR(gajCbklm + gakCjblm + galCjkbm + gamCjklb)

− 1
n− 1

∇iR(gbjCaklm + gbkCjalm + gblCjkam + gbmCjkla)

−∇iR
p
b (gajCpklm + gakCjplm + galCjkpm + gamCjklp)

+∇iR
p
a(gbjCpklm + gbkCjplm + gblCjkpm + gbmCjklp) = 0.
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Now transvecting the last equation with gjb taking account of the first Bianchi identity
for the conformal curvature tensor we have :

(n− 2)∇iRabCmlkb +∇iRbkCmlab +∇iRblCmak
b +∇iRbmCalkb

− (galCmpk
b + gamCplkb)∇iR

p
b = 0.

(2.5)

Again the previous equation is transvected with gim to obtain :

(n− 2)∇mRabCmlkb +∇mRbkCmlab +∇mRblCmak
b +

1
2
(∇bR)Calkb

− galCmpk
b∇mRp

b − Cplkb∇aRp
b = 0.

(2.6)

Now it is well known that the divergence of the conformal curvature is given by ([8]
and [9]) :

(2.7) ∇mCjklm =
n− 3
n− 2

[
∇kRjl −∇jRkl +

1
2(n− 1)

{(∇jR)gkl − (∇kR)gjl}
]
.

So if the manifold is conformally symmetric, it is easily seen that :

(2.8) ∇jRkl −∇kRjl =
1

2(n− 1)
{(∇jR)gkl − (∇kR)gjl}.

This result allows us to examine the last two terms contained in equation (2.6). The
first term vanishes; in fact :

galCmpk
b∇mRp

b =
1
2
galCmpk

b(∇mRp
b −∇pRm

b )

=
1
2
galCmp

k
b(∇mRpb −∇pRmb)

=
1

4(n− 1)
galCmp

k
b{(∇mR)gpb − (∇pR)gmb}

= 0.

(2.9)

Moreover with similar procedure the last term results to be :

Cplkb∇aRp
b = Cplkb∇aRpb

= Cplkb
[
∇pRab +

1
2(n− 1)

{(∇aR)gpb − (∇pR)gab}
]

= Cplkb∇pRab − 1
2(n− 1)

Cplkb(∇pR)gab

= Cmlkb∇mRab − 1
2(n− 1)

(∇mR)Cmlka.

(2.10)

So equation (2.6) can be rewritten in the following form :

(n− 3)∇mRabCmlkb +∇mRbkCmlab +∇mRblCmak
b +

1
2
(∇mR)Calkm

+
1

2(n− 1)
(∇mR)Cmlka = 0.

(2.11)

Now in [3] an interesting Lemma is pointed out (See also [9]) :68
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Lemma 2.2. Let M be an n dimensional conformally symmetric manifold. Then the
following equations hold :

(2.12)
RabCmlkb + RmbClak

b + RlbCamk
b = 0,

∇sRabCmlkb +∇sRmbClak
b +∇sRlbCamk

b = 0.

Transvecting the last of the previous relations with gsm one obtains :

(2.13) ∇mRabCmlkb −∇mRlbCmak
b =

1
2
(∇mR)Calkm.

The equivalent relation −2∇mRbaCmlkb = −2∇mRblCmak
b − (∇mR)Calkm is then

substituted in equation (2.11) to obtain :

(n− 1)∇mRabCmlkb +∇mRbkCmlab −∇mRblCmak
b − 1

2
(∇mR)Calkm

+
1

2(n− 1)
(∇mR)Cmlka = 0.

(2.14)

Again employing Lemma 2.2 with indices k and a exchanged gives :

(2.15) ∇mRbkCmlab −∇mRblCmka
b =

1
2
(∇mR)Cklam.

So equation (2.14) takes the form :

(n− 1)∇mRabCmlkb +∇mRbl(Cmka
b − Cmak

b) +
1
2
(∇mR)(Cklam + Clak

m)

+
1

2(n− 1)
(∇mR)Cmlka = 0.

(2.16)

Recalling that Cmka
b + Ckam

b + Camk
b = 0, the previous equation may be written in

the following form :
(2.17)

(n− 1)∇mRabCmlkb +∇mRblCakm
b +

1
2
(∇mR)Ckalm +

1
2(n− 1)

(∇mR)Cmlka = 0.

Now recalling that ∇mRbl−∇bRml =
1

2(n− 1)
{(∇mR)gbl− (∇bR)gml}, the second

term of the previous equation satisfies the following identities chain :

∇mRblCakm
b = ∇mRblCak

mb =
1
2

Cak
mb(∇mRbl −∇bRml)

=
1

4(n− 1)
Cak

mb(∇mRgbl −∇bRgml)

=
1

2(n− 1)

[
(∇mR)Cakml − (∇bR)Caklb

]

=
1

4(n− 1)
(∇mR)

[
Cakml − Caklm

]
=

(∇mR)
2(n− 1)

Cakml.

(2.18)
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So equation (2.16) takes the form :

(n− 1)∇mRabCmlkb +
1

2(n− 1)
(∇mR)Cakml

+
1
2
(∇mR)Ckalm +

1
2(n− 1)

(∇mR)Cmlka = 0,

(2.19)

or better :

(2.20) (n− 1)∇mRabCmlkb +
1
2
(∇mR)Ckalm = 0.

Now one can observe that ∇mRab = ∇aRmb +
1

2(n− 1)
{(∇mR)gab− (∇aR)gmb} and

thus we can write :

∇mRabCmlkb = ∇mRabC
mlkb

= ∇aRmbC
mlkb +

1
2(n− 1)

[
(∇mR)Cmlkbgab − (∇aR)Cmlkbgmb

]
.

(2.21)

This fact implies that :

(2.22) ∇mRabC
mlkb = ∇aRmbC

mlkb +
1

2(n− 1)
(∇mR)Cmlka.

If the equivalent relation (n−1)∇mRabC
mlkb = (n−1)∇aRmbC

mlkb+
1
2
(∇mR)Cmlka

is substituted in equation (2.20), one obtains that the following holds :

(2.23) (n− 1)∇aRmbC
mlkb = 0.

At last equation (2.5) takes the form :

(2.24) (n− 2)∇iRabCmlkb +∇iRbkCmlab +∇iRblCmak
b +∇iRbmCalkb = 0.

Now Lemma 2.2 is again employed in the form∇iRmbCalkb+∇iRabClmk
b+∇iRlbCmak

b =
0 to equation (2.24) to obtain :

(2.25) (n− 1)∇iRabCmlkb = −∇iRbkCmlab.

Now exchanging the indices k and a in the previous result gives immediately :

(2.26) (n− 1)∇iRkbCmlab = −∇iRabCmlkb.

This implies that (n− 1)2∇iRabCmlkb = ∇iRabCmlkb and so as in [3] and [19] that :

(2.27) ∇iRbkCmlab = 0.

Transvecting the previous result with gik it follows immediately that :

(2.28)
1
2
∇bRCmlab = 0.
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Transvecting (2.4) with ∇iRbj or with Caklm and applying (2.27), one can obtain the
following results :

∇iRbj∇iRbjCaklm = 0 or ∇iRbjCaklmCaklm = 0 .

In fact if equation (2.4) is transvected with ∇iRbj one obtains:

(2.29) (∇iRbj∇iRbj − 1
n− 1

∇iR∇iR)Caklm = 0.

On the other hand if equation (2.4) is transvected with Caklm one easily obtains:

∇iRbjCaklmCaklm +
1

n− 1
∇iR

{
gajCbklm

− gbjCaklm − gbkCjalm − gblCjkam − gbmCjkla
}
Caklm = 0.

(2.30)

Transvecting this last result with gij and making use of equation (2.28) one comes to
the following:

(2.31)
n− 3

2(n− 1)
∇bRCakmlCakml = 0.

Thus we obtain that the manifold is conformally flat or the manifold has constant69

scalar curvature and employing (2.30) it is Ricci symmetric. In this way we have70

proved that the following Theorem holds :71

Theorem 2.3. Let M be an n dimensional conformally symmetric manifold. Then72

it is Ricci symmetric or conformally flat.73

Now recalling Remark 2.1 and Theorem 2.3, we have just proved that∇iRjklm = 074

or Cjklm = 0.75

Remark 2.4. It is worth to notice that from Theorem 2.3 we recover a result of76

Tanno ([20], Theorem 6) : any non conformally flat conformally symmetric manifold77

has constant scalar curvature. This result was used in [9] for the proof of Theorem 1.4.78

In the present paper it has been recovered in our main argument.79

3 An alternative proof of Theorem 1.3 and gener-80

alizations of Theorems 1.1, 1.3 and 1.481

In this section we provide an alternative proof of Theorem 1.3 given in [19] and82

consider a possible generalization of Theorems 1.1, 1.3 and 1.4.83

Theorem 1.3. Let M be an n(≥ 4) dimensional Riemannian manifold with Rieman-84

nian connection ∇. Assume that M is conformally recurrent and has the harmonic85

conformal curvature tensor. Then M is conformally symmetric or conformally flat.86
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Proof. It is well known ([1] eq. 3.7) that the second Bianchi identity for the conformal
curvature tensor may be written in the following form :

∇iCjklm +∇jCkilm +∇kCijlm

=
1

n− 3

[
δm
j ∇pCkilp + δm

k ∇pCijlp + δm
i ∇pCjklp

+ gkl∇pCji
mp + gil∇pCkj

mp + gjl∇pCik
mp

]
.

(3.1)

Thus on a manifold with harmonic conformal curvature tensor [4], the second Bianchi
identity reduces to :

(3.2) ∇iCjklm +∇jCkilm +∇kCijlm = 0 .

If the manifold is also conformally recurrent, i.e. ∇iCjklm = λiCjklm, the last
equation takes the form :

(3.3) λiCjklm + λjCkilm + λkCijlm = 0 .

We note also that if the manifold has the harmonic conformal curvature tensor, i.e.
∇mCjklm = 0, then λmCjklm = 0. Now equation (3.3) is multiplied by λi to obtain
the following result :

(3.4) λiλiCjklm + λiλjCkilm + λiλkCijlm = 0 .

In the previous equation the second and the last terms vanish. In fact for example
one easily obtains λiλjCkilm = gmpλjλ

iCkilp = gmpλjλ
iClpki = 0. Then equation

(3.4) give the following result :

(3.5) λiλiCjklm = 0 .

We have thus obtained that the manifold is confromally flat. In the same manner
equation (3.3) is multiplied by Cjkl

m and the following is fulfilled :

(3.6) λiCjklmCjkl
m + λjCkilmCjkl

m + λkCijlmCjkl
m = 0 .

Thus following the same procedure employed previously we have that the relation :

(3.7) λiCjklmCjkl
m = 0 .

So we have λi = 0 and the manifold is conformally symmetric. ¤87

It is worth to notice that the class of conformally symmetric spaces includes the88

class of conformally flat spaces. The version of Theorem 1.3 proved in the present89

paper is slightly different from [19].90

Now we consider a possible generalization of Theorems 1.1, 1.3 and 1.4 in the direction
of quasi-conformal symmetric or quasi-conformal recurrent Riemannian manifold. In
order to do this, first we need the definition of the concircular curvature tensor (See
[17] and [21]), that is :

(3.8) C̃jklm = Rjklm +
R

n(n− 1)
(δm

j gkl − δm
k gjl).
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Contracting m with j gives the so called Z tensor, i.e. Zkl = −C̃mklm, that is :

(3.9) Zkl = Rkl −
R

n
gkl.

It may be noted from (3.8) that the vanishing of the concircular tensor implies the91

manifold to be a space of constant curvature and from (3.9) that the vanishing of the92

Z tensor implies the manifold to be an Einstein space. So the concircular tensor is a93

measure of the deviation of a manifold from a space of constant curvature and the Z94

tensor is a measure of the deviation from an Einstein space (See [14]).95

In 1968 Yano and Sawaki [22] defined and studied a tensor Wjklm on a Riemannian
manifold of dimension n, which includes both the conformal curvature tensor Cjklm

and the concircular curvature tensor C̃jklm as particular cases. This tensor is known
as quasi conformal curvature tensor and its components are given by :

(3.10) Wjklm = −(n− 2)bCjklm +
[
a + (n− 2)b

]
C̃jklm.

In the previous equation a 6= 0, b 6= 0 are constants and n > 3 since the conformal96

curvature tensor vanishes identically for n = 3. A non flat manifold is said to be97

quasi-conformally recurrent if ∇iWjklm = αiWjklm for a non null covector αi. It is98

said to be quasi-conformally symmetric if ∇iWjklm = 0 and has the harmonic quasi99

conformal curvature tensor if ∇mWjklm = 0. Z recurrency or Z symmetry are de-100

fined in analogous ways. Clearly the class of quasi conformally recurrent Riemannian101

manifolds includes all the class of quasi conformally symmetric and quasi conformally102

flat manifolds. In [2] Amur and Maralabhavi proved that a quasi conformally flat103

Riemannian manifold is either conformally flat or Einstein. A similar remark can be104

proved for quasi conformally symmetric manifolds.105

Remark 3.1. Let M be an n(≥ 4) dimensional quasi conformally symmetric Rie-106

mannian manifold. Then it is either conformally symmetric or Ricci symmetric.107

Proof. In fact the condition ∇iWjklm = 0 implies :

(3.11) (n− 2)b∇iCjklm =
[
a + (n− 2)b

]∇iC̃jklm.

Contracting m with j in the previous equation gives
[
a+(n− 2)b

]
= 0 or ∇iZkl = 0,108

that is, by the equation (3.11) the manifold is conformally symmetric or Z symmetric.109

Now Z symmetric implies ∇iRkl = 1
n (∇iR)gkl and transvecting with gik one gets110

∇lR = 0 and thus ∇iRkl = 0 ¤111

We note that the class of Z symmetric spaces includes the class of Einstein spaces.112

The previous remark allows us to state a modified version of Theorem 1.4 whose proof113

follows immediately from Remark 3.1 and Theorem 1.4 itself :114

Theorem 3.2. Let M be an n(≥ 4) dimensional quasi-conformally symmetric man-115

ifold. Then it is conformally flat or locally symmetric.116

The statement of the previous theorem is due to the fact that local symmetry117

implies Ricci symmetry. We can also state the following modified version of Theo-118

rem 1.1.119
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Theorem 3.3. Let M be an n(≥ 4) dimensional Riemannian manifold of with Rie-120

mannian connection ∇. Assume that M is quasi-conformally recurrent and has the121

harmonic quasi conformal curvature tensor. Then M is conformally symmetric, con-122

formally flat or generalized Ricci recurrent [6].123

Proof. If ∇iWjklm = αiWjklm, then one has :
(3.12)
−(n−2)b∇iCjklm+

[
a+(n−2)b

]∇iC̃jklm = −(n−2)bαiCjklm+
[
a+(n−2)b

]
αiC̃jklm.

Contracting m with j in the previous equation gives :

(3.13)
[
a + (n− 2)b

]∇iZkl =
[
a + (n− 2)b

]
αiZkl.

That is, the manifold is Z recurrent or
[
a + (n − 2)b

]
= 0. In this case we get from

(3.10) that :

(3.14) ∇mWjklm = −(n− 2)b∇mCjklm +
[
a + (n− 2)b

]∇mC̃jklm.

This fact implies that ∇mWjklm = −(n−2)b∇mCjklm and hence that ∇mCjklm = 0
because ∇mWjklm = 0. From (3.12) we have also in the same case

[
a+(n− 2)b

]
= 0

that :

(3.15) −(n− 2)b∇iCjklm = −(n− 2)bαiCjklm.

That is the manifold is conformally recurrent.124

On the other hand, if the covariant derivative with respect to the index m is applied
on the definition of quasi conformal curvature tensor, one obtains straightforwardly

(3.16) ∇mWjklm = [a+ b]∇mRjklm +
2a− b(n− 1)(n− 4)

2n(n− 1)

[
(∇jR)gkl− (∇kR)gjl

]
.

Now if ∇mWjklm = 0, transvecting the previous equation with gkl after some calcu-
lations it follows that

(3.17) (n− 2)
a + b(n− 2)

n
∇jR = 0.

This means that ∇jR = 0 if a + (n− 2)b 6=0 or a + (n− 2)b = 0. Inserting the latter
case in (3.16) we obtain the following

(3.18) ∇mRjklm =
1

2(n− 1)

[
(∇kR)gjl − (∇jR)gkl

]
.

From this, we recover obviously∇mCm
jkl = 0. Now if the conditions∇iW

m
jkl = αiW

m
jkl125

and ∇mWm
jkl = 0 are taken in conjunction, we have two cases. One is obtained from126

(3.12) that ∇iC
m
jkl = αiC

m
jkl with ∇mCm

jkl = 0 when a + b(n− 2) = 0. The other case127

can be given by (3.13) that ∇iZkl = αiZkl with ∇jR = 0 when a + (n− 2)b 6=0.128

In the first case we are in the hypothesis of Theorem 1.3. Accordingly, M is129

conformally symmetric or conformally flat.130

In the second case, we have a Z-recurrent manifold with ∇jR = 0 and thus131

∇iRkl = αi(Rkl − R
n gkl), that is, a generalized Ricci recurrent manifold [6]. ¤132
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Combining the results of Theorems 3.3 and 1.5, we can state the following modified133

version of Theorem 1.3 :134

Theorem 3.4. Let M be an n(≥ 4) dimensional Reimannian manifold of with Rie-135

mannian connection ∇. Assume that M is quasi-conformally recurrent and has the136

harmonic quasi conformal curvature tensor. Then M is conformally flat, locally sym-137

metric, or generalized Ricci recurrent.138
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